基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
研究文本分类、提高文本检索效率问题,针对文本特征维数过高导致神经网络收敛速度慢、文本分类精度低的难题,结合粗糙集的属性约简和神经网络的文本分类优点,提出了一种粗糙集(RS)结合BP神经网络的文本自动分类算法(RS-BPNN).RS-BPNN首先应用粗糙集理论的属性约简对文本特征预处理,降低向量维数,然后把冗余的属性从决策表中删去,最后利用神经网络进行分类.并在MATLAB环境中进行了仿真实验,仿真结果表明,RS-BPNN方法的识别精度比传统的BP神经网络高4%左右,提高了文本分类的精度和检索效率.
推荐文章
基于粗糙集和BP神经网络的空气质量评价方法
粗糙集
BP神经网络
评价
属性约简
训练
一种基于蚁群算法与粗糙集的混合 BP神经网络
蚁群算法ACA
粗糙集
BP神经网络
基于灰色粗糙集与BP神经网络的设备故障预测
灰色关联分析
粗糙集
BP神经网络
约简
故障预测
基于粗糙集和神经网络的数据融合方法研究
粗糙集
神经网络
BP算法
数据融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粗糙集和BP神经网络的文本分类研究
来源期刊 计算机仿真 学科 工学
关键词 粗糙集 神经网络 文本分类 约简
年,卷(期) 2011,(6) 所属期刊栏目 人工智能与专家系统
研究方向 页码范围 219-222,283
页数 分类号 TP183
字数 4353字 语种 中文
DOI 10.3969/j.issn.1006-9348.2011.06.054
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 唐云 成都理工大学信息工程学院 7 84 7.0 7.0
2 罗俊松 成都理工大学信息工程学院 15 88 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (127)
参考文献  (6)
节点文献
引证文献  (19)
同被引文献  (21)
二级引证文献  (9)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(8)
  • 参考文献(2)
  • 二级参考文献(6)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(4)
  • 引证文献(4)
  • 二级引证文献(0)
2013(5)
  • 引证文献(4)
  • 二级引证文献(1)
2014(3)
  • 引证文献(1)
  • 二级引证文献(2)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
粗糙集
神经网络
文本分类
约简
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机仿真
月刊
1006-9348
11-3724/TP
大16开
北京海淀阜成路14号
82-773
1984
chi
出版文献量(篇)
20896
总下载数(次)
43
论文1v1指导