基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The known Fourier-Chernikov algorithm of linear inequality system convolution is complemented with an original procedure of all dependent (redundant) inequalities deletion. The concept of “almost dependent” inequalities is defined and an algorithm for further reducing the system by deletion of these is considered. The concluding algorithm makes it possible to hold actual-time convolution of a general inequality system containing up to 50 variables with the rigorous method of dependent inequalities deletion and up to 100 variables with the approximate method of one. The main application of such an approach consists in solving linear inequality system in an explicit form. These results are illustrated with a series of computer experiments.
推荐文章
改进Closed_Form Solution方法进行前景物体运动模糊抠图
Closed_Form Solution抠图
运动模糊
梯度统计特征
透明度
改进的Closed-Form Solution景物提取算法
自然景物提取
抠像技术
拉普拉斯Q
Effects of a proline solution cover on the geochemical and mineralogical characteristics of high-sul
Proline
Coal gangue
Pollution control
Heavy metal fraction
Mineralogical characteristics
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Solution Building for Arbitrary System of Linear Inequalities in an Explicit Form
来源期刊 美国计算数学期刊(英文) 学科 数学
关键词 Linear INEQUALITIES CONVOLUTION Variable Elimination Orthogonal Projection Method Fourier Algorithm Chernikov Rules DEPENDENT INEQUALITIES REDUNDANT INEQUALITIES Almost DEPENDENT INEQUALITIES Matrix CLEANUP COARSENING
年,卷(期) 2012,(1) 所属期刊栏目
研究方向 页码范围 1-11
页数 11页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Linear
INEQUALITIES
CONVOLUTION
Variable
Elimination
Orthogonal
Projection
Method
Fourier
Algorithm
Chernikov
Rules
DEPENDENT
INEQUALITIES
REDUNDANT
INEQUALITIES
Almost
DEPENDENT
INEQUALITIES
Matrix
CLEANUP
COARSENING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
总被引数(次)
0
论文1v1指导