基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The most significant practical challenge for face recognition is perhaps variability in lighting intensity. In this paper, we developed a face recognition which is insensitive to large variation in illumination. Normalization step including two steps, first we used Histogram truncation as a pre-processing step and then we implemented Homomorphic filter. The main idea is that, achieving illumination invariance causes to simplify feature extraction module and increases recognition rate. Then we utilized Fuzzy Linear Discriminant Analysis (FLDA) in feature extraction stage which showed a good discriminating ability compared to other methods while classification is performed using Feedforward Neural Network (FFNN). The experiments were performed on the ORL (Olivetti Research Laboratory) face image database and the results show the present method outweighs other techniques applied on the same database and reported in literature.
推荐文章
Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element
Geochemical signature
Concentration–area (C–A) fractal
Principal component analysis (PCA)
Student's t-value
Fuzzy mineral prospectivity modeling(MPM)
Prediction–area (P–A) plot
L-fuzzy格及(λ,μ)-fuzzy凸子格
L-fuzzy集
L-fuzzy格
(λ,μ)-fuzzy理想
(λ,μ)-fuzzy凸子格
FACE水稻生育期模拟
水稻
FACE
生育期
模拟模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Illumination Invariant Face Recognition Using Fuzzy LDA and FFNN
来源期刊 信号与信息处理(英文) 学科 工学
关键词 FACE Recognition HISTOGRAM TRUNCATION Homomorphic Filter FUZZY LDA FFNN
年,卷(期) 2012,(1) 所属期刊栏目
研究方向 页码范围 45-50
页数 6页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FACE
Recognition
HISTOGRAM
TRUNCATION
Homomorphic
Filter
FUZZY
LDA
FFNN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号与信息处理(英文)
季刊
2159-4465
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
301
总下载数(次)
0
总被引数(次)
0
论文1v1指导