The paper focuses on the conductivity of the fuel cell electrolyte in a membraneless glucose-fueled alkaline fuel cell. The electrolyte conductivity is interpreted using simple physical models, considering either the empirical behavior of the solution’s viscosity, or the consideration of ions and molecules colliding in solutions. The conductivity is expressed as a function of KOH and glucose concentrations. The physical properties of the species (i.e. radii, thermal velocity) and the chemical equilibrium constant of the reaction that glucose undergoes in an alkaline solution can be estimate by comparing the experimental results with the theory.