基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In Wireless Sensors Networks, the computational power and storage capacity is limited. Wireless Sensor Networks are operated in low power batteries, mostly not rechargeable. The amount of data processed is incremental in nature, due to deployment of various applications in Wireless Sensor Networks, thereby leading to high power consumption in the network. For effectively processing the data and reducing the power consumption the discrimination of noisy, redundant and outlier data has to be performed. In this paper we focus on data discrimination done at node and cluster level employing Data Mining Techniques. We propose an algorithm to collect data values both at node and cluster level and finding the principal component using PCA techniques and removing outliers resulting in error free data. Finally a comparison is made with the Statistical and Bucket-width outlier detection algorithm where the efficiency is improved to an extent.
推荐文章
ZigBee协议栈wireless UART模板网络自启动的实现
ZigBee协议栈
绑定
网络自启动
wireless UART
Wireless-LAN安全及认证方法的研究与分析
无线局域网
安全机制
认证方法
可扩展认证协议
基于USB2.0的高象素CMOS Sensor疵点检测系统
USB2.0
疵点
图像处理
检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Improved Data Discrimination in Wireless Sensor Networks
来源期刊 无线传感网络(英文) 学科 医学
关键词 WIRELESS Sensor Networks (WSN) Data MINING CLUSTERING ANOMALY DETECTION OUTLIER DETECTION
年,卷(期) 2012,(4) 所属期刊栏目
研究方向 页码范围 117-119
页数 3页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
WIRELESS
Sensor
Networks
(WSN)
Data
MINING
CLUSTERING
ANOMALY
DETECTION
OUTLIER
DETECTION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线传感网络(英文)
月刊
1945-3078
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
358
总下载数(次)
0
总被引数(次)
0
论文1v1指导