基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决BP神经网络局部性收敛度慢的问题,提出了基于改进粒子群算法的BP神经网络模型.该方法通过粒子群进化速率动态调整惯性权重因子,提高了算法的收敛速度和全局搜索最优值的能力.提出的模型和改进的算法模拟仿真表明:该方法对收敛速度和精度有更好的拟合性.
推荐文章
基于粒子群算法优化BP神经网络漏钢预报的研究
粒子群优化算法
BP神经网络
连铸
漏钢预测
改进粒子群算法在BP神经网络拟合非线性函数方面的应用
BP神经网络
粒子群算法
函数拟合
免疫接种
基于粒子群优化BP神经网络的脉象识别方法
脉象识别
粒子群算法
输出误差
误差反向传播算法
神经网络
泛化能力
基于粒子群优化BP神经网络的高校科研管理评估研究
高校科研管理
绩效评估
粒子群算法
BP神经网络
模型预测
预测精度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进粒子群算法的BP神经网络模型研究
来源期刊 佳木斯大学学报:自然科学版 学科 工学
关键词 粒子群算法 进化速率 惯性权重因子 BP神经网络
年,卷(期) 2012,(1) 所属期刊栏目
研究方向 页码范围 107-109
页数 3页 分类号 TP311
字数 1909字 语种 中文
DOI 10.3969/j.issn.1008-1402.2012.01.028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 南振岐 西北师范大学数学与信息科学学院 7 29 3.0 5.0
2 姚尔果 西北师范大学数学与信息科学学院 3 21 2.0 3.0
3 闫秋粉 西北师范大学数学与信息科学学院 2 19 2.0 2.0
4 薛小虎 2 19 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (60)
参考文献  (5)
节点文献
引证文献  (7)
同被引文献  (14)
二级引证文献  (21)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(3)
  • 引证文献(1)
  • 二级引证文献(2)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(4)
  • 引证文献(1)
  • 二级引证文献(3)
2016(4)
  • 引证文献(1)
  • 二级引证文献(3)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2018(6)
  • 引证文献(0)
  • 二级引证文献(6)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
粒子群算法
进化速率
惯性权重因子
BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
佳木斯大学学报(自然科学版)
双月刊
1008-1402
23-1434/T
大16开
黑龙江省佳木斯市学府街148号
14-176
1983
chi
出版文献量(篇)
5218
总下载数(次)
9
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导