基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this paper, a hybrid method is introduced briefly to predict the behavior of the non-linear partial differential equations. The method is hybrid in the sense that different numerical methods, differential transform and finite differences, are used in different subdomains. Our aim of this approach is to combine the flexibility of differential transform and the efficiency of finite differences. An explicit hybrid method for the transient response of inhomogeneous nonlinear partial differential equations is presented;applying finite difference scheme on the fixed grid size is used to approximate the space discretisation, whereas the differential transform method is used for time operator. Comparison of the efficiency of the different approaches is a very important aspect of this study. In our test cases, the hybrid approach is faster than the corresponding highly optimized finite difference method in two dimensional computations. We compared our hybrid approach’s results with the exact and/or numerical solutions of PDE which obtained from Adomian Decomposition Method. Results show that the hybrid approach may be an important tool to reduce the execution time and memory requirements for large scale computations and get remarkable results in predicting the solutions of nonlinear initial value problems.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Application of the Hybrid Differential Transform Method to the Nonlinear Equations
来源期刊 应用数学(英文) 学科 数学
关键词 HYBRID Differential Transform/Finite DIFFERENCE Method Nonlinear INITIAL Value Problems Numerical Solution
年,卷(期) 2012,(3) 所属期刊栏目
研究方向 页码范围 246-250
页数 5页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
HYBRID
Differential
Transform/Finite
DIFFERENCE
Method
Nonlinear
INITIAL
Value
Problems
Numerical
Solution
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导