基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种基于数据关系(Data Relationship,DR)的多分类支持向量机(Support Vector Machine,SVM)学习算法(Multi-Classification SVM Algorithm Based on Data Relationship,DR-SVM).DR-SVM算法根据每类数据的关系(如向量积等)获取子学习嚣的冗余信息,从而优化多分类器组,然后通过经典的SVM算法训练分类器组.算法在简化分类器组的同时可对多类数据分类问题获得满意的泛化能力,在标准数据集上的实验结果表明,与经典的SVM多分类方法相比,DR-SVM具有更好的泛化性能,尤其对单个类别精度要求较高的数据尤其有效.
推荐文章
基于SVM预分类学习的图像超分辨率重建算法
超分辨率重建
支持向量机(SVM)
颜色特征
样本学习
基于支持向量数据描述算法的SVM多分类新方法
支持向量数据描述算法
支持向量机多分类
分类器
基于多核学习SVM的图像分类识别算法
支持向量机
多核学习
行人检测
图像识别
直方图交叉核
交叉验证
一种基于累积适应度遗传算法的 SVM多分类决策树
多分类
支持向量机
遗传算法
累积适应度函数
全局优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于数据关系的SVM多分类学习算法
来源期刊 山西大学学报(自然科学版) 学科 工学
关键词 支持向量机 多分类 数据关系 泛化能力
年,卷(期) 2012,(2) 所属期刊栏目 数学与计算机科学
研究方向 页码范围 224-230
页数 分类号 TP18
字数 3999字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王文剑 山西大学计算智能与中文信息处理教育部重点实验室 97 798 14.0 23.0
5 郭虎升 山西大学计算机与信息技术学院 24 174 8.0 12.0
6 梁志 山西大学计算机与信息技术学院 1 8 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (55)
参考文献  (4)
节点文献
引证文献  (8)
同被引文献  (2)
二级引证文献  (1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
多分类
数据关系
泛化能力
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山西大学学报(自然科学版)
季刊
0253-2395
14-1105/N
大16开
太原市坞城路92号
22-42
1960
chi
出版文献量(篇)
2646
总下载数(次)
7
总被引数(次)
12039
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
山西省自然科学基金
英文译名:Shanxi Natural Science Foundation
官方网址:http://sxnsfc.sxinfo.gov.cn/sxnsf/index.aspx
项目类型:
学科类型:
论文1v1指导