基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
当前的部分多标签分类算法本质上由两项分类技术级联而成,前一级建立标签排序系统,后一级检测相关标签,兼顾进一步改善分类性能.本文针对不同标签检测技术开展研究,收集并实现4种通用标签检测技术:线性回归阈值法、多输出线性回归法、Logistic回归法以及离散Bayes规则,以k近邻算法作为基线算法,在10个基准数据集上进行实验比较.实验结果表明,从计算时间与分类性能两个方面来说,多输出线性回归法是值得推荐的方法.
推荐文章
标签相关的多标签分类算法
离散化
贝叶斯网
朴素贝叶斯分类器
多标签学习
基于标签相关性的类属属性多标签分类算法
标签相关性
类属属性
多标签学习
基于标签相似度的不良信息多标签分类方法
多标签分类
标签之间的相关关系
不良信息
中心标签
标签相似度系数矩阵
基于多标签分类的传感器网络数据故障检测算法
传感器网络
数据故障
多标签分类
ReliefF
遗传算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多标签分类中标签检测技术的实验比较
来源期刊 南京师范大学学报:工程技术版 学科 工学
关键词 多标签分类 k近邻法 线性回归阈值函数 多输出线性回归 Logistic回归 离散Bayes规则
年,卷(期) 2012,(4) 所属期刊栏目 计算机与通信工程
研究方向 页码范围 55-61
页数 7页 分类号 TP18
字数 5062字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 许建华 南京师范大学计算机科学与技术学院 12 383 6.0 12.0
2 刘佳丽 南京师范大学计算机科学与技术学院 3 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1996(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多标签分类
k近邻法
线性回归阈值函数
多输出线性回归
Logistic回归
离散Bayes规则
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京师范大学学报(工程技术版)
季刊
1672-1292
32-1684/T
大16开
南京市宁海路122号
2001
chi
出版文献量(篇)
1491
总下载数(次)
3
总被引数(次)
7734
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导