The structures of complexes [MⅡ2Cl4L2] and [MⅢ2Cl7L]- (M = Mo, Re; L = Ph2Ppy, (Ph2P)2py) were calculated by using density functional theory (DFT) PBE0 method. Based on the optimized geometries, the natural bond orbital (NBO) analyses were carried out to study the nature of Re-Re and Mo-Mo bonds. The conclusions are as follows: the M-M distances in two-Ph2Ppy or (Ph2P)2py complexes [MⅡ2Cl4L2] are shorter than those in mono-Ph2Ppy or (Ph2P)2py complexes [MⅢ2Cl7L]- due to the double bridged N-C-P interactions. For singlet of all complexes, there is ReⅢ-ReⅢ or MoⅡ-MoⅡ quadruply bond in complex [Re2Cl7L]- or [Mo2Cl4L2], while only ReⅡ-ReⅡ or MoⅢ-MoⅢ triply bond in complex [Re2Cl4L2] or [Mo2Cl7L]-. The most stable spin state of 2 and 6, triplet, only contains triple ReⅢ-ReⅢ bond. Because the LPCl → BD*Re-Re delocalizations weaken the Re-Re bond, the distance of ReⅢ-ReⅢ quadruple bonds in [Re2Cl7L]- is slightly longer than that of ReⅡ-ReⅡ triple bonds in [Re2Cl4L2]. Moreover, due to the delocalizations from the lone pair electrons of the remaining P’ atom to the M-M antibonding orbitals, the M-M distance in (Ph2P)2py complexes is slightly longer than that in Ph2Ppy complexes.