基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The Artificial Neural Network (ANN) approach has been successfully used in many hydrological studies especially the rainfall-runoff modeling using continuous data. The present study examines its applicability to model the event-based rainfall-runoff process. A case study has been done for Ajay river basin to develop event-based rainfall-runoff model for the basin to simulate the hourly runoff at Sarath gauging site. The results demonstrate that ANN models are able to provide a good representation of an event-based rainfall-runoff process. The two important parameters, when predicting a flood hydrograph, are the magnitude of the peak discharge and the time to peak discharge. The developed ANN models have been able to predict this information with great accuracy. This shows that ANNs can be very efficient in modeling an event-based rainfall-runoff process for determining the peak discharge and time to the peak discharge very accurately. This is important in water resources design and management applications, where peak discharge and time to peak discharge are important input variables
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Artificial Neural Networks for Event Based Rainfall-Runoff Modeling
来源期刊 水资源与保护(英文) 学科 医学
关键词 Artificial NEURAL Networks (ANNs) EVENT Based RAINFALL-RUNOFF Process Error BACK Propagation NEURAL Power
年,卷(期) 2012,(10) 所属期刊栏目
研究方向 页码范围 891-897
页数 7页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Artificial
NEURAL
Networks
(ANNs)
EVENT
Based
RAINFALL-RUNOFF
Process
Error
BACK
Propagation
NEURAL
Power
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水资源与保护(英文)
月刊
1945-3094
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1200
总下载数(次)
0
论文1v1指导