基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统KNN算法忽略样本分布对分类的影响,易受到孤立样本、噪音等干扰,时间代价大等问题,提出了一种改进的近邻分类算法.该算法首先采用类维样本存储,打破了样本的整体性,转换了训练样本存储模式;其次按类维度寻求未知样本的类维近邻域,计算类维相似度进而得到未知样本的类别相似度;最后以最大类别相似度标识未知样本.该算法提高了分类效率,降低了独立样本对样本分类的影响.同时可处理连续型和标识型样本分类,并可适应各类样本分布情况,扩大了算法的应用范围.实验结果表明,该算法较传统的近邻算法与邻域分类算法在分类精度与分类时间上有了较大提升.
推荐文章
基于K近邻的众包数据分类算法
众包数据
质量控制
K近邻投票
多数投票
基于近邻分类的增量学习分类算法研究
增量学习
最近邻算法
匹配度
基于k-最近邻图的小样本KNN分类算法
KNN算法
k-最近邻图
小样本
图划分
分类算法
采用潜在概率语义模型和K近邻分类器的音频分类算法
梅尔频率倒谱系数
词-频共现矩阵
声音袋模型
潜在概率语义模型
K近邻分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于维样本近邻区间的分类算法研究
来源期刊 华中科技大学学报:自然科学版 学科 工学
关键词 最近邻算法 类维样本 维近邻区间 维相似度 分类
年,卷(期) 2012,(12) 所属期刊栏目 计算机科学与技术
研究方向 页码范围 39-43
页数 分类号 TP301.6
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王宇平 西安电子科技大学计算机学院 128 1633 22.0 34.0
2 李娟 西安电子科技大学计算机学院 19 72 5.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (34)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(3)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
最近邻算法
类维样本
维近邻区间
维相似度
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华中科技大学学报(自然科学版)
月刊
1671-4512
42-1658/N
大16开
武汉市珞喻路1037号
38-9
1973
chi
出版文献量(篇)
9146
总下载数(次)
26
总被引数(次)
88536
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导