原文服务方: 化工学报       
摘要:
提出了群智能优化AC_ICPSO (ant colony and immune clone particle swarm optimization)算法,融合蚁群算法与粒子群算法进行动态群体搜索,设计交叉算子和变异算子、群体多次编码、迭代选择等,来提高数据搜索的范围、精度和收敛的效率,避免早熟,降低算法的复杂度.然后利用AC_ICPSO方法对最小二乘支持向量机预报模型(LSSVM)进行参数寻优,得到最优的AC_ICPSO_ LSSVM预报模型.以实际聚丙烯生产的熔融指数预报作为实例进行研究,结果表明所提出的AC_ICPSO_LSSVM方法有效,具有良好的预报精度.
推荐文章
免疫PSO_WLSSVM最优聚丙烯熔融指数预报
免疫粒子群优化
多样性
支持向量机
熔融指数预报
参数寻优
基于PSO_SA算法的聚丙烯熔融指数预报
粒子群优化(PSO)
模拟退火(SA)
RBF神经网络
熔融指数预报
一种基于新型蚁群算法的聚丙烯熔融指数预报模型
蚁群算法
主元分析法
RBF神经网络
熔融指数预报
自适应粒子群优化算法在聚丙烯熔融指数预报上的应用
聚丙烯熔融指数预报
自适应粒子群优化算法
径向基函数神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 群智能优化LSSVM最优聚丙烯熔融指数预报
来源期刊 化工学报 学科
关键词 群智能优化 最小二乘支持向量机 熔融指数预报 参数寻优
年,卷(期) 2012,(9) 所属期刊栏目 过程系统工程
研究方向 页码范围 2794-2798
页数 分类号 TP273
字数 语种 中文
DOI 10.3969/j.issn.0438-1157.2012.09.019
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (23)
参考文献  (12)
节点文献
引证文献  (3)
同被引文献  (13)
二级引证文献  (10)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
群智能优化
最小二乘支持向量机
熔融指数预报
参数寻优
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
化工学报
月刊
0438-1157
11-1946/TQ
大16开
1923-01-01
chi
出版文献量(篇)
11879
总下载数(次)
0
总被引数(次)
117834
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导