基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
K-Means算法是一种基于划分方法的经典聚类算法,已经在很多领域得到广泛的应用.虽然该算法有很多优点,但其也存在自身的局限性,比如需要用户输入聚类簇个数,初始聚类中心是随机性选择的,算法容易陷入局部最优解,对孤立点比较敏感等.文中首先应用统计学中的标准分数对样本进行孤立点分析,然后提出一种新的初始聚类中心确定策略.对改进的算法和原算法分别做实验进行比较,实验结果表明,改进的算法在准确率、收敛速度和稳定性方面都有很大的提高.
推荐文章
k-means算法的研究与改进
聚类
划分方法
数据样本
阈值
改进的K-means算法
K-means算法
数据分布
初始中心点
均衡化函数
基于改进磷虾群算法的K-means算法
磷虾群算法
聚类算法
精英引领
最佳聚类数
动态分群
基于MapReduce框架下K-means的改进算法
MapReduce框架
K-means算法
数据挖掘
聚类分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 K-Means算法的研究与改进
来源期刊 计算机技术与发展 学科 工学
关键词 K-Means算法 孤立点 初始聚类中心
年,卷(期) 2012,(10) 所属期刊栏目
研究方向 页码范围 101-104
页数 分类号 TP301.6
字数 4050字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周爱武 安徽大学计算机科学与技术学院 34 615 11.0 24.0
2 陈宝楼 安徽大学计算机科学与技术学院 2 38 2.0 2.0
3 王琰 安徽大学计算机科学与技术学院 10 59 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (231)
参考文献  (7)
节点文献
引证文献  (32)
同被引文献  (62)
二级引证文献  (70)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(1)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(11)
  • 引证文献(7)
  • 二级引证文献(4)
2015(10)
  • 引证文献(7)
  • 二级引证文献(3)
2016(7)
  • 引证文献(4)
  • 二级引证文献(3)
2017(16)
  • 引证文献(5)
  • 二级引证文献(11)
2018(18)
  • 引证文献(4)
  • 二级引证文献(14)
2019(24)
  • 引证文献(3)
  • 二级引证文献(21)
2020(14)
  • 引证文献(0)
  • 二级引证文献(14)
研究主题发展历程
节点文献
K-Means算法
孤立点
初始聚类中心
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导