基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对非平衡数据分类问题,提出了一种改进的SVM-KNN分类算法,在此基础上设计了一种集成学习模型.该模型采用限数采样方法对多数类样本进行分割,将分割后的多数类子簇与少数类样本重新组合,利用改进的SVM-KNN分别训练,得到多个基本分类器,对各个基本分类器进行组合.采用该模型对UCI数据集进行实验,结果显示该模型对于非平衡数据分类有较好的效果.
推荐文章
一种鲁棒非平衡极速学习机算法
极速学习机
不平衡数据集
基于核的可能性模糊C-均值聚类
神经网络
一种处理非平衡数据集的优化随机森林分类方法
随机森林
最大投票熵
广义欧几里得距离
不平衡数据集
不平衡数据的集成分类算法综述
不平衡数据
集成学习
分类
代价敏感
数据采样
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种用于非平衡数据分类的集成学习模型
来源期刊 计算机工程与应用 学科 工学
关键词 非平衡数据 集成学习模型 基本分类器 改进的支持向量机-K最近邻(SVM-KNN) UCI数据集
年,卷(期) 2012,(29) 所属期刊栏目 数据库、信号与信息处理
研究方向 页码范围 119-123,219
页数 分类号 TP301
字数 5002字 语种 中文
DOI 10.3778/j.issn.1002-8331.2012.29.024
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨炳儒 北京科技大学计算机与通信工程学院 319 4361 32.0 49.0
2 翟云 北京科技大学计算机与通信工程学院 7 122 5.0 7.0
3 焦盛岚 北京科技大学计算机与通信工程学院 1 9 1.0 1.0
4 赵万里 北京科技大学计算机与通信工程学院 1 9 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (190)
参考文献  (10)
节点文献
引证文献  (9)
同被引文献  (24)
二级引证文献  (10)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(8)
  • 参考文献(2)
  • 二级参考文献(6)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(8)
  • 引证文献(1)
  • 二级引证文献(7)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
非平衡数据
集成学习模型
基本分类器
改进的支持向量机-K最近邻(SVM-KNN)
UCI数据集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导