基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前,支持向量机( SVM)常用的参数寻优方法存在易陷入局部极值的缺点,而其常用的核函数的逼近精度也有待提高.基于混沌映射的遍历性与随机性和小波变换的局部分析与特征提取能力,提出了一种混沌粒子群优化小波支持向量机(CPSO-WSVM)的算法,并应用它构建汇率预测模型.实验结果表明,相比传统的粒子群优化高斯核SVM(PSO-GSVM)的算法,CPSO-WSVM算法大大提高了预测的精度和效率,应用效果好.
推荐文章
粒子群算法优化支持向量机的网络流量混沌预测
粒子群算法优化
支持向量机
网络流量
混沌预测
平均绝对误差
蚁群算法
基于粒子群算法优化支持向量机的模拟电路诊断
故障诊断
模拟电路
粒子群优化
多小波变换
支持向量机
基于粒子群优化支持向量机的建筑室内温度预测模型
室内温度
楼宇阀门
支持向量机
粒子群优化算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混沌粒子群优化小波支持向量机的汇率预测
来源期刊 科学技术与工程 学科 工学
关键词 混沌粒子群优化 小波核函数 支持向量机 汇率 预测
年,卷(期) 2012,(11) 所属期刊栏目 管理科学
研究方向 页码范围 2660-2664
页数 分类号 F832.6|TP391
字数 4116字 语种 中文
DOI 10.3969/j.issn.1671-1815.2012.11.031
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 廖淑娇 漳州师范学院数学与信息科学系 8 10 2.0 3.0
2 冯晓霞 漳州师范学院数学与信息科学系 11 28 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (11)
参考文献  (4)
节点文献
引证文献  (7)
同被引文献  (7)
二级引证文献  (1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
混沌粒子群优化
小波核函数
支持向量机
汇率
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科学技术与工程
旬刊
1671-1815
11-4688/T
大16开
北京市海淀区学院南路86号
2-734
2001
chi
出版文献量(篇)
30642
总下载数(次)
83
总被引数(次)
113906
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导