原文服务方: 华侨大学学报(自然科学版)       
摘要:
提出一种基于小波分解和支持向量机相结合的模型,将其应用于预测商业建筑电力负荷.首先,基于商业建筑配电系统的数据采集系统实时监测数据,分析商业负荷用电特性,指出商业负荷的随机特性造成单一预测模型精度难以满足要求.其次,提出了一种基于小波分解和粒子群支持向量机的商业电力负荷预测算法.通过小波变换把负荷序列分解为不同频段的子序列,再对这些子序列分别采用不同的粒子群支持向量机模型进行预测,引入粒子群算法对支持向量机模型参数进行寻优.最后,将各分量预测值重构得到最终预测值.实验结果证明:小波分解后和粒子群支持向量机相结合的模型精度明显优于单一支持向量机模型.
推荐文章
基于小波支持向量回归的电力系统负荷预测
电力负荷
小波支持向量回归
短期预测
混沌动力系统
基于小波变换和支持向量机的人脸检测
人脸检测
小波变换
支持向量机
基于支持向量机回归的电力负荷预测研究
结构风险最小化
支持向量机
支持向量回归
电力负荷预测
神经网络
高斯小波支持向量机的研究
高斯小波核
支持向量机
核函数方法
短期负荷预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 应用小波变换和支持向量机的商业电力负荷预测
来源期刊 华侨大学学报(自然科学版) 学科
关键词 商业电力 负荷预测 支持向量机 小波分解 节能 数据采集系统 粒子群算法
年,卷(期) 2015,(2) 所属期刊栏目
研究方向 页码范围 142-146
页数 5页 分类号 TM715
字数 语种 中文
DOI 10.11830/ISSN.1000-5013.2015.02.0142
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 方瑞明 华侨大学信息科学与工程学院 70 673 16.0 23.0
2 梁颖 华侨大学信息科学与工程学院 5 117 4.0 5.0
3 黄文权 华侨大学信息科学与工程学院 3 8 2.0 2.0
4 杨屹洲 华侨大学信息科学与工程学院 1 4 1.0 1.0
5 汪亮 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (106)
参考文献  (12)
节点文献
引证文献  (4)
同被引文献  (11)
二级引证文献  (1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(9)
  • 参考文献(2)
  • 二级参考文献(7)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(7)
  • 参考文献(2)
  • 二级参考文献(5)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
商业电力
负荷预测
支持向量机
小波分解
节能
数据采集系统
粒子群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华侨大学学报(自然科学版)
双月刊
1000-5013
35-1079/N
大16开
1980-01-01
chi
出版文献量(篇)
2616
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导