作者:
原文服务方: 当代旅游       
摘要:
电力系统负荷预测精度受天气状况、经济形势、日期类型等因素影响强烈,需要研究新技术与新方法以提高预测精度,从而增强电力系统运行可靠性与稳定性.本文建立基于支持向量机的短期负荷预测模型并通过算例验证模型有效性.
推荐文章
基于相似日的支持向量机短期负荷预测
负荷预测
最小二乘支持向量机
细菌趋化
相似日
日期距离
野草算法和支持向量机相融合的短期负荷预测
电力系统
短期负荷
野草算法
相空间重构
基于最小二乘支持向量机的短期负荷预测模型
最小二乘支持向量机
神经网络
短期负荷预测
时间序列预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机的短期负荷预测
来源期刊 当代旅游 学科
关键词 电力系统负荷 短期预测 支持向量机 网格法
年,卷(期) 2018,(17) 所属期刊栏目 旅游与经济
研究方向 页码范围 7
页数 1页 分类号
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李德康 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (520)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(9)
  • 参考文献(1)
  • 二级参考文献(8)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电力系统负荷
短期预测
支持向量机
网格法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
当代旅游
半月刊
1671-7740
23-1508/G
大16开
2017-01-01
chi
出版文献量(篇)
7586
总下载数(次)
0
总被引数(次)
234
论文1v1指导