原文服务方: 计算技术与自动化       
摘要:
短期负荷预测准确性对于电网态势感知和电网策略具有十分重要的意义.提出一种基于混沌类电磁学(CEM)优化支持向量机的短期负荷预测方法,该方法利用聚类思想判断数据质量并进行相关数据预处理工作.建立支持向量机的短期负荷预测模型,针对传统支持向量机参数选择困难问题,引入混沌类电磁学算法优化参数,提高算法收敛效率和寻优能力.仿真结果表明:所提算法较传统支持向量机算法和粒子群-支持向量机算法(PSO-SVM)收敛速度更快,寻优能力更强,适用于短期负荷预测.
推荐文章
野草算法和支持向量机相融合的短期负荷预测
电力系统
短期负荷
野草算法
相空间重构
基于支持向量机的短期负荷预测
电力系统负荷
短期预测
支持向量机
网格法
基于相似日的支持向量机短期负荷预测
负荷预测
最小二乘支持向量机
细菌趋化
相似日
日期距离
遗传算法优化支持向量机的网络流量混沌预测
遗传算法优化
支持向量机
网络流量
混沌预测
相空间重构
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混沌类电磁算法优化支持向量机的短期负荷预测
来源期刊 计算技术与自动化 学科
关键词 负荷预测 类电磁学 支持向量机
年,卷(期) 2019,(4) 所属期刊栏目 控制系统与自动化装置
研究方向 页码范围 15-18
页数 4页 分类号 TM796
字数 语种 中文
DOI 10.16339/j.cnki.jsjsyzdh.201904003
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (141)
共引文献  (97)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(11)
  • 参考文献(0)
  • 二级参考文献(11)
2008(10)
  • 参考文献(0)
  • 二级参考文献(10)
2009(10)
  • 参考文献(0)
  • 二级参考文献(10)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(15)
  • 参考文献(1)
  • 二级参考文献(14)
2012(12)
  • 参考文献(1)
  • 二级参考文献(11)
2013(12)
  • 参考文献(0)
  • 二级参考文献(12)
2014(12)
  • 参考文献(0)
  • 二级参考文献(12)
2015(16)
  • 参考文献(1)
  • 二级参考文献(15)
2016(10)
  • 参考文献(2)
  • 二级参考文献(8)
2017(6)
  • 参考文献(4)
  • 二级参考文献(2)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
负荷预测
类电磁学
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算技术与自动化
季刊
1003-6199
43-1138/TP
16开
1982-01-01
chi
出版文献量(篇)
2979
总下载数(次)
0
论文1v1指导