基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The burgeoning use of Web 2.0-powered social media in recent years has inspired numerous studies on the content and composition of online social networks (OSNs). Many methods of harvesting useful information from social networks’ immense amounts of user-generated data have been successfully applied to such real-world topics as politics and marketing, to name just a few. This study presents a novel twist on two popular techniques for studying OSNs: community detection and sentiment analysis. Using sentiment classification to enhance community detection and community partitions to permit more in-depth analysis of sentiment data, these two techniques are brought together to analyze four networks from the Twitter OSN. The Twitter networks used for this study are extracted from four accounts related to Microsoft Corporation, and together encompass more than 60,000 users and 2 million tweets collected over a period of 32 days. By combining community detection and sentiment analysis, modularity values were increased for the community partitions detected in three of the four networks studied. Furthermore, data collected during the community detection process enabled more granular, community-level sentiment analysis on a specific topic referenced by users in the dataset.
推荐文章
一种分布式Twitter数据处理方案及应用
社交媒体
分布式处理框架
Twitter流式数据
流感疫情侦测
分布式计算
Twitter的Follow关系和Retweet关系对比
在线社交网络
网络数据分类
同质性
推特网
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Mutually Enhancing Community Detection and Sentiment Analysis on Twitter Networks
来源期刊 数据分析和信息处理(英文) 学科 工学
关键词 COMMUNITY Detection SENTIMENT ANALYSIS TWITTER Online Social NETWORKS MODULARITY Community-Level SENTIMENT ANALYSIS
年,卷(期) 2013,(3) 所属期刊栏目
研究方向 页码范围 19-29
页数 11页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
COMMUNITY
Detection
SENTIMENT
ANALYSIS
TWITTER
Online
Social
NETWORKS
MODULARITY
Community-Level
SENTIMENT
ANALYSIS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据分析和信息处理(英文)
季刊
2327-7211
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
106
总下载数(次)
0
总被引数(次)
0
论文1v1指导