基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Although association rule mining is an important pattern recognition and data analysis technique, extracting and finding significant rules from a large collection has always been challenging. The ability of information visualization to enable users to gain an understanding of high dimensional and large-scale data can play a major role in the exploration, identification, and interpretation of association rules. In this paper, we propose a method that provides multiple views of the association rules, linked together through a filtering mechanism. A visual inspection of the entire association rule set is enabled within a matrix view. Items of interest can be selected, resulting in their corresponding association rules being shown in a graph view. At any time, individual rules can be selected in either view, resulting in their information being shown in the detail view. The fundamental premise in this work is that by providing such a visual and interactive representation of the association rules, users will be able to find important rules quickly and easily, even as the number of rules that must be inspected becomes large. A user evaluation was conducted which validates this premise.
推荐文章
ViEWS评分联合血乳酸指导急诊分层管理的价值
Vitalpac早期预警评分
血乳酸
急诊
分层管理
基于DBLP数据的多维异质网络Graph OLAP设计与实现
图挖掘
图联机分析处理
数据仓库
图立方体
结合GMM和Graph-Cuts的直观传输函数设计方法
直接体绘制
传输函数
Graph-Cuts算法
高斯混合模型
空间信息
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Visualizing Association Rules Using Linked Matrix,Graph, and Detail Views
来源期刊 智能科学国际期刊(英文) 学科 医学
关键词 Association Rules Information VISUALIZATION SCALABLE VISUALIZATION Knowledge VISUALIZATION Human Computer Interaction USER EVALUATIONS
年,卷(期) 2013,(1) 所属期刊栏目
研究方向 页码范围 34-49
页数 16页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Association
Rules
Information
VISUALIZATION
SCALABLE
VISUALIZATION
Knowledge
VISUALIZATION
Human
Computer
Interaction
USER
EVALUATIONS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能科学国际期刊(英文)
季刊
2163-0283
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
102
总下载数(次)
0
总被引数(次)
0
论文1v1指导