基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In men, prostate cancer is one of the most frequent types, and radiotherapy is adopted as a form of treatment. Although there are efforts to minimize the dose in the healthy organ and tissues adjacent to the tumor during radiotherapy, these organs are affected by the secondary scattered and leakage radiation originating from the therapeutic beam and these doses deposited in the healthy organs, can induce the appearance of new focal points of cancer. The aim of this study is to calculate the equivalent and effective doses, due to photons and neutrons, in healthy organs of a patient submitted to radiotherapy treatment for prostate cancer. Computed simulation of radiotherapy treatment for prostate cancer was used to perform the dose calculations, adopting the treatment protocol used at INCA (Brazilian National Cancer Institute). The MCNPX code was employed in the simulation radiation transport while the male voxel MAX phantom was used to represent the patient's human anatomy. The results obtained in this study indicate that the organs close to the irradiated region are predominantly affected by the dose due to photons, with an impact on organs from different systems of the body, such as the bladder, colon, and testicles, besides bone structures such as the femur, pelvis and spinal column. The results obtained from the doses deposited due to neutrons suggest that tibia and fibula, mandible, cranium, brain and thyroid, had the highest dose deposited due to neutrons in relation to photons. The result obtained from the effective dose was 31.47 mSv due to photons, while the dose due to neutrons was 0.42 mSv. Note that the effective dose due to photons is significantly higher than the effective dose due to neutrons. The values calculated in this study were compared with the experimental values obtained in the literature, presenting reasonable concordance. Additionally, as described in the literature, it was verified that the dose due to photons decreases considerably with the increase in the distance of the target organ,
推荐文章
3D MAX动画中材质参数的数字水印算法
数字水印
版权保护
3DMAX
材质
小波变换
PCA
数据融合
职高计算机应用专业“3D MAX”专业课程高效教学初探
案例教学法
认知理论
实践能力
高效
剖析3D 电视
3D电视
偏光式
主动快门式
3D视频格式
frame packing HDMI1.4
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Calculation of Dose in Healthy Organs, during Radiotherapy 4-Field Box 3D Conformal for Prostate Cancer, Simulation of the Linac 2300, Radiotherapy Room and MAX Phantom
来源期刊 医学物理学、临床工程、放射肿瘤学(英文) 学科 医学
关键词 RADIOTHERAPY Prostate MCNPX MAX and LINAC
年,卷(期) 2013,(2) 所属期刊栏目
研究方向 页码范围 61-68
页数 8页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
RADIOTHERAPY
Prostate
MCNPX
MAX
and
LINAC
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
医学物理学、临床工程、放射肿瘤学(英文)
季刊
2168-5436
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
236
总下载数(次)
0
总被引数(次)
0
论文1v1指导