基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高疲劳驾驶的预测精度,提出了基于减法聚类和遗传粒子群优化模糊神经网络的疲劳驾驶预测模型.根据训练样本,利用减法聚类确定网络结构和初始参数;借助于进化速度因子,采用自适应遗传粒子群算法优化网络参数.利用疲劳驾驶实车模拟实验获得的数据,对该模型进行了训练和测试,并将结果与传统的粒子群、遗传和反向传播算法进行对比.结果表明,该模型不仅精简了网络结构,缩短了训练时间,而且减小了全局误差,提高了预测精度.
推荐文章
自适应粒子群神经网络交通流预测模型
交通流
预测
粒子群优化
神经网络
基于D-S理论和模糊神经网络的疲劳驾驶监测
疲劳驾驶
D-S证据理论
模糊神经网络
基于粒子群的模糊神经网络交通流量预测
短时交通流
预测模型
模糊神经网络
粒子群算法
基于面向对象自适应粒子群算法的神经网络训练
神经网络
粒子群优化算法
面向对象方法
拓扑结构优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自适应遗传粒子群优化模糊神经网络的疲劳驾驶预测模型
来源期刊 汽车工程 学科
关键词 疲劳驾驶 减法聚类 自适应遗传粒子群优化 模糊神经网络
年,卷(期) 2013,(3) 所属期刊栏目 论文
研究方向 页码范围 219-223,228
页数 6页 分类号
字数 3957字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张为公 东南大学仪器科学与工程学院 227 2706 26.0 38.0
2 唐慧强 南京信息工程大学信息与控制学院 93 736 13.0 21.0
3 孙伟 南京信息工程大学信息与控制学院 38 250 9.0 14.0
4 夏旻 南京信息工程大学信息与控制学院 25 102 7.0 8.0
5 张小瑞 南京信息工程大学信息与控制学院 46 304 9.0 15.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (35)
参考文献  (8)
节点文献
引证文献  (13)
同被引文献  (23)
二级引证文献  (45)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(7)
  • 引证文献(3)
  • 二级引证文献(4)
2016(7)
  • 引证文献(4)
  • 二级引证文献(3)
2017(6)
  • 引证文献(0)
  • 二级引证文献(6)
2018(15)
  • 引证文献(3)
  • 二级引证文献(12)
2019(15)
  • 引证文献(1)
  • 二级引证文献(14)
2020(6)
  • 引证文献(0)
  • 二级引证文献(6)
研究主题发展历程
节点文献
疲劳驾驶
减法聚类
自适应遗传粒子群优化
模糊神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
汽车工程
月刊
1000-680X
11-2221/U
大16开
北京市西城区莲花池东路102号天连大厦1003室
2-341
1979
chi
出版文献量(篇)
4728
总下载数(次)
23
总被引数(次)
66645
论文1v1指导