基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Actual software development processes define the different steps developers have to perform during a development project. Usually these development steps are not described independently from each other—a more or less formal flow of development step is an essential part of the development process definition. In practice, we observe that often the process definitions are hardly used and very seldom “lived”. One reason is that the predefined general process flow does not reflect the specific constraints of the individual project. For that reasons we claim to get rid of the process flow definition as part of the development process. Instead we describe in this paper an approach to smartly assist developers in software process execution. The approach observes the developer’s actions and predicts his next development step based on the project process history. Therefore we apply machine learning resp. sequence learning approaches based on a general rule based process model and its semantics. Finally we show two evaluations of the presented approach: The data of the first is derived from a synthetic scenario. The second evaluation is based on real project data of an industrial enterprise.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
An experimental study on dynamic coupling process of alkaline feldspar dissolution and secondary min
Alkaline feldspar
Dissolution rate
Precipitation
Mineral conversion
Secondary porosity
(p,a)-sensitive k-匿名隐私保护模型
数据发布
敏感度
K-匿名
隐私泄露
分组
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Smart Development Process Enactment Based on Context Sensitive Sequence Prediction
来源期刊 电脑和通信(英文) 学科 医学
关键词 SOFTWARE Engineering SOFTWARE PROCESS DESCRIPTION LANGUAGES SOFTWARE Processes PROCESS ENACTMENT PROCESS Improvement Machine Learning SEQUENCE Prediction
年,卷(期) 2013,(5) 所属期刊栏目
研究方向 页码范围 32-39
页数 8页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SOFTWARE
Engineering
SOFTWARE
PROCESS
DESCRIPTION
LANGUAGES
SOFTWARE
Processes
PROCESS
ENACTMENT
PROCESS
Improvement
Machine
Learning
SEQUENCE
Prediction
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导