原文服务方: 上海海事大学学报       
摘要:
为快速辨别海底底质类型和海底目标,在分析Kohonen自组织特征映射网络(Self-Organizing Feature Map,SOFM)和学习向量量化(Learning Vector Quantization,LVQ)算法的基础上,提出一种SOFM算法与改进的LVQ算法相结合的混合神经网络分类方法.利用这种分类方法,对预处理后的多波束测深系统获取的反向散射强度数据进行训练分类.通过对在实验区域提取的检测样本的分类结果进行比较分析,表明该方法是可行、有效的,而且在底质类型特征相近的情况下,具有较好的分类效果.
推荐文章
基于神经网络的图像分类算法
分类算法
神经网络
图像处理
图像分类
基于卷积神经网络的军事图像分类
军事图像分类
深度学习
卷积神经网络
主成分分析白化
随机池化
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
基于概率神经网络的遥感图像分类MATLAB实现
Matlab
概率神经网络
分类
精度
Kappa系数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混合神经网络的多波束图像底质分类
来源期刊 上海海事大学学报 学科
关键词 底质分类 反向散射强度 自组织特征映射 学习向量量化
年,卷(期) 2013,(4) 所属期刊栏目
研究方向 页码范围 27-30
页数 4页 分类号 U652.21|TP183
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王凤伟 上海海事大学商船学院 1 5 1.0 1.0
2 孔凡邨 上海海事大学商船学院 14 140 6.0 11.0
3 廉清云 上海海事大学商船学院 7 21 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (33)
参考文献  (8)
节点文献
引证文献  (5)
同被引文献  (8)
二级引证文献  (13)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(4)
  • 引证文献(1)
  • 二级引证文献(3)
2017(5)
  • 引证文献(1)
  • 二级引证文献(4)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
底质分类
反向散射强度
自组织特征映射
学习向量量化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海海事大学学报
季刊
1672-9498
31-1968/U
大16开
1979-01-01
chi
出版文献量(篇)
1795
总下载数(次)
0
总被引数(次)
13718
论文1v1指导