基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
AI researchers typically formulated probabilistic planning under uncertainty problems using Markov Decision Processes (MDPs).Value Iteration is an inef?cient algorithm for MDPs, because it puts the majority of its effort into backing up the entire state space, which turns out to be unnecessary in many cases. In order to overcome this problem, many approaches have been proposed. Among them, LAO*, LRTDP and HDP are state-of-the-art ones. All of these use reach ability analysis and heuristics to avoid some unnecessary backups. However, none of these approaches fully exploit the graphical features of the MDPs or use these features to yield the best backup sequence of the state space. We introduce an improved algorithm named Topological Order Value Iteration (TOVI) that can circumvent the problem of unnecessary backups by detecting the structure of MDPs and backing up states based on topological sequences. The experimental results demonstrate the effectiveness and excellent performance of our algorithm.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Topological Order Value Iteration Algorithm for Solving Probabilistic Planning
来源期刊 通讯与网络(英文) 学科 数学
关键词 PROBABILISTIC Planning MARKOV DECISION Processes Dynamic PROGRAMMING Value ITERATION
年,卷(期) 2013,(1) 所属期刊栏目
研究方向 页码范围 86-89
页数 4页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
PROBABILISTIC
Planning
MARKOV
DECISION
Processes
Dynamic
PROGRAMMING
Value
ITERATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通讯与网络(英文)
季刊
1949-2421
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
427
总下载数(次)
0
总被引数(次)
0
论文1v1指导