基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
By combining a pair of linear springs we devise a nonlinear vibrator. For a one dimensional scenario the nonlinear force is composed of a polynomial of odd powers of position-dependent variable greater than or equal three. For a chosen initial condition without compromising the generality of the problem we analyze the problem considering only the leading cubic term. We solve the equation of motion analytically leading to The Jacobi Elliptic Function. To avoid the complexity of the latter, we propose a practical, intuitive-based and easy to use alternative semi-analytic method producing the same result. We demonstrate that our method is intuitive and practical vs. the plug-in Jacobi function. According to the proposed procedure, higher order terms such as quintic and beyond easily may be included in the analysis. We also extend the application of our method considering a system of a three-linear spring. Mathematica [1] is being used throughout the investigation and proven to be an indispensable computational tool.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Linear, Cubic and Quintic Coordinate-Dependent Forces and Kinematic Characteristics of a Spring-Mass System
来源期刊 力学国际期刊(英文) 学科 数学
关键词 LINEAR CUBIC and Quintic Nonlinear OSCILLATIONS Semi-Analytic Solution to Equation of Motion MATHEMATICA
年,卷(期) 2013,(6) 所属期刊栏目
研究方向 页码范围 265-269
页数 5页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LINEAR
CUBIC
and
Quintic
Nonlinear
OSCILLATIONS
Semi-Analytic
Solution
to
Equation
of
Motion
MATHEMATICA
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
力学国际期刊(英文)
月刊
2160-049X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
280
总下载数(次)
0
总被引数(次)
0
论文1v1指导