Purpose:The purpose of this paper is to measure author influence in scientific collaboration networks by considering the combined effects of multiple indexes.In the meanwhile,we intend to explore a method to avoid assigning subjective weights.Design/methodology/approach:We applied four centrality measures(degree centrality,betweenness centrality,closeness centrality and eigenvector centrality)and authors’published papers to the scientific collaboration network.The grey relational analysis(GRA)method based on information entropy was used to measure an author’s impact in the collaboration network.The weight of each evaluation index was determined based on information entropy.The ACM SIGKDD collaboration network was selected as an example to demonstrate the practicality and effectiveness of our method.Findings:Author influence was not always positively correlated with evaluation indexes such as degree centrality and betweenness centrality.This implies that combined effects of multiple indexes should be considered in author impact analysis.The introduction of the GRA method based on information entropy can reduce the interference of human factors in the evaluation process.Research limitations:We only analyzed author influence from the perspective of scientific collaboration,but the impact of citation on author influence was ignored.Practical implications:The proposed method can be also applied to detect influential authors in bibliographic co-citation network,author co-citation network,bibliographic coupling network or author coupling network.It would help facilitate scientific collaboration and enhance scholarly communication.Originality/value:This paper proposes an analytical method of evaluating author influence in scientific collaboration networks,in which combined effects of multiple indexes are considered and the interference of human factors is reduced in the evaluation process.