作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Artificial neural networks (ANN) are employed using different combinations among the surface friction velocity u*, surface buoyancy flux Bs, free-flow stability N, Coriolis parameter f, and surface roughness length z0 from large-eddy simulation data as inputs to investigate which variables are essential in determining the stable boundary layer(SBL) height h. In addition, the performances of several conventional linear SBL height parameterizations are evaluated. ANN results indicate that the surface friction velocity u* is the most predominant variable in the estimation of SBL height h. When u* is absent, the secondly important variable is the surface buoyancy flux Bs. The relevance of N, f, and z0 to h is also discussed;f affects more than N does, and z0 shows to be the most insensitive variable to h.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
Dynamics of soil organic carbon following land-use change: insights from stable C-isotope analysis i
C3 photosynthesis
C4 photosynthesis
Land-use change
Stable carbon isotopes
Black soil of Northeast China
Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from Shangzhi, N
Mantle peridotite
Li isotope
Mantle metasomatism
Northeastern China
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Stable Boundary Layer Height Parameterization: Learning from Artificial Neural Networks
来源期刊 大气和气候科学(英文) 学科 医学
关键词 Artificial NEURAL Network Large-Eddy Simulation STABLE Boundary Layer HEIGHT
年,卷(期) dqhqhkxyw_2013,(4) 所属期刊栏目
研究方向 页码范围 523-531
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Artificial
NEURAL
Network
Large-Eddy
Simulation
STABLE
Boundary
Layer
HEIGHT
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大气和气候科学(英文)
季刊
2160-0414
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
426
总下载数(次)
0
论文1v1指导