原文服务方: 河北省科学院学报       
摘要:
K-Means算法是划分式聚类算法.本文通过在应用中的编程实现分析了基于欧式距离的划分式聚类算法的基本原理、实现步骤和编程时的注意事项,最后分析了该算法的优缺点.
推荐文章
基于划分的数据挖掘K-means聚类算法分析
数据挖掘
聚类分析
K-means聚类算法
聚类中心选取
K-means算法改进
初始中心点
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
基于变异的k-means聚类算法
聚类
mk-means算法
变异
基于距离阈值及样本加权的 K-means 聚类算法
距离阈值
样本加权
K-means ,轮廓系数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于距离的K-Means划分式聚类算法及其编程实现
来源期刊 河北省科学院学报 学科
关键词 K-Means 聚类 算法 编程
年,卷(期) 2013,(4) 所属期刊栏目
研究方向 页码范围 17-21
页数 5页 分类号 TP301
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵旭 河北省科学院自动化研究所 3 7 2.0 2.0
2 连翠玲 河北省科学院自动化研究所 3 7 2.0 2.0
3 马宝秋 石家庄职业技术学院机电工程系 13 21 4.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (884)
参考文献  (6)
节点文献
引证文献  (4)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(10)
  • 参考文献(1)
  • 二级参考文献(9)
2008(5)
  • 参考文献(3)
  • 二级参考文献(2)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
K-Means
聚类
算法
编程
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河北省科学院学报
季刊
1001-9383
13-1081/N
大16开
1984-01-01
chi
出版文献量(篇)
1657
总下载数(次)
0
总被引数(次)
5900
论文1v1指导