目前主流的僵尸网络检测方法主要利用网络流量分析技术,这往往需要数据包的内部信息,或者依赖于外部系统提供的信息或僵尸主机的恶意行为,并且大多数方法不能自动存储僵尸网络的流量特征,不具有联想记忆功能。为此提出了一种基于 BP 神经网络的僵尸网络检测方法,通过大量的僵尸网络和正常流量样本训练 BP 神经网络分类器,使其学会辨认僵尸网络的流量,自动记忆僵尸流量特征,从而有效检测出被感染的主机。该神经网络分类器以主机对为分析对象,提取2个主机间通信的流量特征,将主机对的特征向量作为输入,有效地区分出正常主机和僵尸主机。实验表明,该方法的检测率达到99%,误报率在1%以下,具有良好的性能。