A model detailing the conditions for the formation of active enzymes from amino acid monomers in the pre-biotic aqueous environment is proposed, making use of only a minimal number of parameters: the intensity of the amino acid source and the experimental rate coefficient for polypeptide hydrolysis. In a closed system with fixed total amino acid concentration, the formation of polypeptides of significant length is precluded by hydrolysis. In the presence of an amino acid source, the behavior of the steady state solutions is dependent on the efficiency of the catalytic activity in the environment. In absence of catalysis the formation of long amino acid chains shows a remarkable similarity to the equilibrium problem, i.e. it is equally unlikely that an active protein forms. In the presence of catalysis the concentration of polypeptides of significant length increases dramatically to about the same order of magnitude as the steady state concentration of the monomers. Besides the important notion of the proto-enzyme concentration, the model offers a link between the given environmental conditions (flux of monomers, rates of the peptide bond formation and hydrolysis, size of the amino acid set) and properties of the polypeptide relevant to its catalytic properties, such as its length and conserved number of residues.