原文服务方: 湖南大学学报(自然科学版)       
摘要:
为了提高基于油中溶解气体分析(dissolved gas analysis,DGA)的变压器故障诊断正确率,弥补单子空间特征提取的局限性,提出了基于双子空间特征提取的变压器故障分层诊断模型.首先,将DGA测试样本在一个子空间内进行特征提取后,为避免核函数及其参数的选择难题,以及利用多核支持向量机(multiple-kernel support vector machine,MKSVM)鲁棒性强和精度高的特点,采用MKSVM作为分类器对测试样本进行预测.依据预测结果将测试样本分为难分类和易分类样本,对易分类样本直接进行分类识别;对难分类样本则将该样本再次投影到另一子空间进行特征提取后,同样采用MKSVM作为分类器对难分类样本进行预测,综合两次预测结果进行分类识别,实现两分类MKSVM的双子空间特征提取算法.最后,根据故障特征,建立基于双子空间特征提取算法的变压器故障分层诊断模型.诊断实例表明,该模型具有较高的诊断正确率和推广能力.
推荐文章
基于小波神经网络的变压器PD故障诊断模型的研究
小波
神经网络
故障诊断
模式识别
PCA和KICA特征提取的变压器故障诊断模型
电力变压器
油中溶解气体分析
故障诊断
特征提取
主元分析
核独立主元分析
多核支持向量机
一种基于SVM算法的电力变压器机械故障智能诊断模型
电力变压器
振动信号
支持向量机
智能故障诊断
基于支持向量机的变压器故障诊断
变压器
故障诊断
K均值聚类
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于双空间特征提取的变压器故障诊断模型
来源期刊 湖南大学学报(自然科学版) 学科
关键词 故障诊断 双空间算法 特征提取 多核学习 支持向量机
年,卷(期) 2013,(11) 所属期刊栏目 机电工程
研究方向 页码范围 70-76
页数 7页 分类号 TM411|TP27
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 桂卫华 中南大学信息科学与工程学院 695 7452 38.0 56.0
2 唐勇波 中南大学信息科学与工程学院 24 165 6.0 12.0
4 彭涛 中南大学信息科学与工程学院 39 362 9.0 18.0
5 欧阳伟 20 177 6.0 13.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (80)
共引文献  (146)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1909(1)
  • 参考文献(0)
  • 二级参考文献(1)
1950(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(5)
  • 参考文献(1)
  • 二级参考文献(4)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(11)
  • 参考文献(0)
  • 二级参考文献(11)
2006(9)
  • 参考文献(1)
  • 二级参考文献(8)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(7)
  • 参考文献(2)
  • 二级参考文献(5)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(6)
  • 参考文献(2)
  • 二级参考文献(4)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
故障诊断
双空间算法
特征提取
多核学习
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖南大学学报(自然科学版)
月刊
1674-2974
43-1061/N
16开
1956-01-01
chi
出版文献量(篇)
4768
总下载数(次)
0
总被引数(次)
41941
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导