基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对特征提取与场景描述在场景分类任务中的重要性,提出了一种独立子空间内的场景特征增量学习方法,采用基于独立子空间分析的无监督学习方法获取结构化的特征基元,基元的优化过程融入增量学习的思想框架中,以解决大样本以及动态样本下的学习难题.通过特征基元的非线性映射获取一种规则网格划分下的图像块状描述子,最后结合空间金字塔匹配模型构建层次化的场景描述,有效提高了场景图像分类的精确度.在OT场景图像集上的实验结果表明,所得特征基元能够用于构建低维高效的场景描述,通过详细讨论相关参数对优化过程以及分类性能的影响,并与多种典型模型下的实验结果进行对比,充分验证了该方法在场景分类任务中的有效性.
推荐文章
图像场景识别中深度学习方法综述
场景识别
场景分类
深度学习
图像特征
计算机视觉
一种新的SVM多层增量学习方法HISVML
支持向量机
增量学习
关键词学习
文本分类
基于特征关系依赖网络的小样本学习方法
深度学习
小样本学习
度量学习
特征优化
原型调整
支持向量机增量学习方法及应用
支持向量机
增量学习
学习精度
学习速度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 独立子空间中的场景特征增量学习方法
来源期刊 计算机研究与发展 学科 工学
关键词 独立子空间分析 增量学习 特征基元 空间金字塔匹配 场景分类
年,卷(期) 2013,(11) 所属期刊栏目 机器学习与数据挖掘
研究方向 页码范围 2287-2294
页数 8页 分类号 TP391.41
字数 5932字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴克伟 合肥工业大学计算机与信息学院 33 325 10.0 17.0
2 谢昭 合肥工业大学计算机与信息学院 44 279 8.0 15.0
3 凌然 合肥工业大学计算机与信息学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (49)
参考文献  (12)
节点文献
引证文献  (2)
同被引文献  (1)
二级引证文献  (4)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(1)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
独立子空间分析
增量学习
特征基元
空间金字塔匹配
场景分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机研究与发展
月刊
1000-1239
11-1777/TP
大16开
北京中关村科学院南路6号
2-654
1958
chi
出版文献量(篇)
7553
总下载数(次)
35
总被引数(次)
164870
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导