基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
作为一种有效的非线性降维方法,流形学习在众多领域吸引了广泛的关注并取得了长足的发展。但当样本点较为稀疏时,样本点的局部邻域很难满足流形学习局部同胚的前提条件,此时流形学习算法往往效果变差甚至失效。一种有效的解决方法是增加一些新的插值点。但已有的插值方法选取的插值点与原样本点均存在线性关系。从线性代数的理论来说,由插值点和原有邻域点张成的线性子空间与原有邻域点张成的子空间是一样的,因此,不会改善线性逼近的误差。而且,插值点没有反应出流形的本质结构和特征,从理论上背离了数据降维的目的。为此,提出了一种基于Biharmonic非线性插值技术的流形学习算法BbMLA。由于是从高维曲面逼近的角度非线性的选择插值点,插值出的样本点不会被原有邻域点线性表示,从而能更好的重构原样本点。将BbMLA应用到多个数据集后,图示说明了插值点能够有效的改善邻域内的样本点结构,同时插值后的流形学习算法具有较好的有效性和稳定性。
推荐文章
流形学习中的算法研究
流形学习
主流形
局部线性嵌套
等度规映射
变分法
互信息
基于ISOMAP的一种多流形学习算法
ISOMAP
多流形
流形学习
基于核融合的多信息流形学习算法
核融合
流形学习
多信息
一种基于线性插值的流形学习算法
流形学习
数据降维
重心
插值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于Biharmonic样条插值的流形学习算法*
来源期刊 中山大学学报(自然科学版) 学科 工学
关键词 流形学习 数据降维 曲面拟合 插值
年,卷(期) 2013,(5) 所属期刊栏目
研究方向 页码范围 82-90,96
页数 10页 分类号 TP391.4
字数 6986字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马争鸣 中山大学信息科学与技术学院 30 636 14.0 25.0
2 顾艳春 佛山科学技术学院电子与信息工程学院 13 35 4.0 5.0
4 梁宇滔 中山大学信息科学与技术学院 2 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (16)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (1)
二级引证文献  (0)
1987(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(5)
  • 参考文献(2)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(2)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
流形学习
数据降维
曲面拟合
插值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中山大学学报(自然科学版)
双月刊
0529-6579
44-1241/N
大16开
广东省广州市新港西路135号
46-15
1955
chi
出版文献量(篇)
5017
总下载数(次)
6
总被引数(次)
45576
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导