基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对建模数据存在的高维、共线性等特征,以及常用的基于人工智能的建模方法存在的模型结构难以确定、学习速度慢等缺点,提出了由基于主元分析(PCA)的特征提取和基于优化极限学习机(OELM)的建模算法两部分组成的软测量方法.采用PCA消除输入变量间的共线性并降低输入变量维数,以提取的线性无关的独立变量作为软测量模型的输入,从而简化模型结构.采用集成极限学习机(ELM)与支持向量机(SVM)算法优点的OELM方法作为建模算法,避免了ELM模型的随机性和SVM模型求解的复杂性.将特征提取方法与OELM方法结合后,提高了软测量模型的训练速度和预测性能.采用所述方法,对混凝土抗压强度的软测量问题进行了实验研究,验证了所提方法的有效性.该方法同时可以应用于基于雷达、光电等高维数据的目标识别,具有广阔的应用前景.
推荐文章
改进粒子群优化的极限学习机软测量建模方法
软测量建模
极限学习机
粒子群优化算法
自适应权重
基于核极限学习机的快速主动学习方法及其软测量应用
主动学习
过程控制
优化
核极限学习机
软测量
化学过程
基于Gath-Geva算法和核极限学习机的多阶段间歇过程软测量
软测量
间歇过程
主元分析
核极限学习机
Gath-Geva 算法
遗传算法
模型
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征提取和极限学习机的软测量方法
来源期刊 控制工程 学科 工学
关键词 优化极限学习机 主元分析 特征提取 软测量
年,卷(期) 2013,(1) 所属期刊栏目 过程控制技术及应用
研究方向 页码范围 55-58
页数 4页 分类号 TP27
字数 3892字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵立杰 东北大学自动化研究中心 18 406 10.0 18.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (34)
参考文献  (8)
节点文献
引证文献  (15)
同被引文献  (42)
二级引证文献  (12)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(5)
  • 参考文献(3)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(6)
  • 引证文献(4)
  • 二级引证文献(2)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(8)
  • 引证文献(3)
  • 二级引证文献(5)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
优化极限学习机
主元分析
特征提取
软测量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制工程
月刊
1671-7848
21-1476/TP
大16开
沈阳东北大学310信箱
8-216
1994
chi
出版文献量(篇)
5468
总下载数(次)
9
总被引数(次)
44239
论文1v1指导