基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
大多统计模型的输出与输入都是高度非线性和线性相叠加的关系,为了更好地实现数据驱动的研究,本文提出了一种隐含层组合型的ELM (Extreme Learning Machine with Hybrid Hidden Layer, HHL-ELM)神经网络。该HHL-ELM神经网络在传统的ELM网络的隐含层中增加一个特殊的节点,该特殊节点的激活函数与隐含层其他节点激活函数不同,从而形成了一种隐含层组合的网络结构,试图增强ELM网络模型的输出。同时,本文利用UCI标准数据集中的Housing数据集进行了测试,并通过工业应用实例进行了验证。最后进行了模型对比,结果表明HHL-ELM网络在处理复杂数据时具有精度高的特点,为神经网络发展及其应用提供了新思路。
推荐文章
基于 ELM 的跨越前馈神经网络及其应用研究
神经网络
跨越连接
极速学习机
倒立摆系统
大坝变形监测统计模型与混沌优化ELM组合模型
大坝位移
大坝变形监测
统计模型
混沌
极限学习机
基于 GA-ELM 的飞行载荷参数识别
飞行载荷
飞行参数
遗传算法
极限学习机
GA-ELM模型
近邻传播聚类算法的RBF隐含层节点优化
径向基函数神经网络
近邻传播聚类算法
隐含层
逼近误差
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 隐含层组合型ELM研究及应用
来源期刊 计算机与应用化学 学科 化学
关键词 极限学习机 建模 复杂数据
年,卷(期) 2013,(12) 所属期刊栏目
研究方向 页码范围 1393-1396
页数 4页 分类号 TQ015.9|TP391.9|O6-39
字数 3544字 语种 中文
DOI 10.11719/com.app.chem20131203
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱群雄 北京化工大学信息科学与技术学院 151 1425 19.0 26.0
2 贺彦林 北京化工大学信息科学与技术学院 11 110 5.0 10.0
3 刘国超 北京化工大学信息科学与技术学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (30)
参考文献  (8)
节点文献
引证文献  (3)
同被引文献  (3)
二级引证文献  (3)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(2)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(7)
  • 参考文献(3)
  • 二级参考文献(4)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
极限学习机
建模
复杂数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与应用化学
双月刊
1001-4160
11-3763/TP
大16开
北京中关村北二街2条1号
82-500
1984
chi
出版文献量(篇)
5704
总下载数(次)
10
总被引数(次)
27612
论文1v1指导