基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过对高维数据可视化方法的系统研究,提出了一种新的基于自组织映射(Self-Organizing Map,SOM)的算法。为了表现该方法的特点,将其称为三维自组织映射(Three-Dimensional SOM,TDSOM)。它在对高维数据记录集进行SOM分析后将其投影到三维坐标系中的特定的点集上,最终形成三维模型。该模型弥补了传统模型难以清晰准确地展现高维数据的缺陷,并且新模型着重于在一个比二维平面更为广阔的三维立体空间中展现海量数据。使用者通常可以根据当前领域的专业知识在分析模型的基础上得出有意义的模式。新方法可以广泛使用在数据挖掘和模式识别等领域。
推荐文章
多维数据集中高维数据可视化算法研究
多维
数据集
可视化
平行坐标系
基于深度特征与非线性降维的图像数据集可视化方法
数据可视化
深度学习
非线性降维
卷积神经网络
基于参数嵌入算法的支持向量机分类可视化研究
支持向量机
可视化
分类
参数嵌入
后验概率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的基于SOM的高维数据可视化算法
来源期刊 计算机工程与应用 学科 工学
关键词 自组织映射 神经网络 高维数据可视化 聚类分析
年,卷(期) 2013,(17) 所属期刊栏目
研究方向 页码范围 112-115
页数 4页 分类号 TP389.1
字数 3817字 语种 中文
DOI 10.3778/j.issn.1002-8331.1112-0636
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 许晓兵 上海理工大学管理学院管理科学与工程系 35 171 8.0 11.0
2 王志省 上海理工大学管理学院管理科学与工程系 2 21 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (32)
参考文献  (14)
节点文献
引证文献  (9)
同被引文献  (31)
二级引证文献  (11)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(1)
  • 二级参考文献(0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(3)
  • 参考文献(2)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(6)
  • 引证文献(3)
  • 二级引证文献(3)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
自组织映射
神经网络
高维数据可视化
聚类分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导