基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
遥感影像分类一直是遥感领域的研究热点.集成学习通过多个单一分类器得到的分类信息进行综合来提高分类的精度.论文阐述了集成技术的常用算法和策略,给出了遥感数据分类采用单分类算法,Bagging,Boosting以及MCS集成分类的实验结果的比较和分析.实验表明,集成技术能有效提高遥感数据的分类精度.在训练样木少的情况下,提供了一种保证分类性能和泛化性的有效途径.
推荐文章
深度学习在遥感影像分类中的研究进展
深度置信网
卷积神经网络
栈式自动编码器
遥感影像分类
深度学习
集成学习在短文本分类中的应用研究
短文本分类
机器学习
深度学习
集成学习
Bagging
Stacking
集成学习算法在不平衡分类中的应用研究
机器学习
类不平衡
集成学习
评测标准
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 集成学习在遥感分类中的应用
来源期刊 计算机与数字工程 学科 工学
关键词 集成学习 遥感图像 Bagging Boosting
年,卷(期) 2013,(5) 所属期刊栏目 算法与分析
研究方向 页码范围 697-699
页数 3页 分类号 TP751
字数 2805字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林英 云南大学软件学院 32 197 7.0 12.0
2 张雁 北京林业大学信息学院 41 135 7.0 9.0
4 吕丹桔 西南林业大学计算机与信息学院 26 50 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (89)
共引文献  (233)
参考文献  (9)
节点文献
引证文献  (5)
同被引文献  (26)
二级引证文献  (8)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(7)
  • 参考文献(0)
  • 二级参考文献(7)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(4)
  • 参考文献(1)
  • 二级参考文献(3)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(11)
  • 参考文献(1)
  • 二级参考文献(10)
2006(11)
  • 参考文献(1)
  • 二级参考文献(10)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(6)
  • 引证文献(0)
  • 二级引证文献(6)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
集成学习
遥感图像
Bagging
Boosting
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导