基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了更精确地检测出混沌背景下的微弱目标信号,提高预测效果,文中提出了一种混沌混合粒子群优化RBF神经网络(CHPSO-RBFNN)算法。本算法主要采用了基于群体自适应变异和个体退火操作的混沌粒子群优化RBF神经网络,利用群体自适应变异以及个体退火操作优化混沌粒子群,有效地提高了粒子群算法的全局收敛性,优化了RBF神经网络的结构和参数。把该算法用于预测混沌时间序列、检测混沌背景下微弱目标信号,实验结果表明本算法有良好的非线性预测能力,可以有效地检测出混沌背景下的微弱目标信号。
推荐文章
粒子群优化RBF神经网络的DNA序列分类
DNA序列分类
PSO-RBF神经网络
特征提取
分类模型建立
参数优化
分类效果对比
一种基于高维粒子群算法的神经网络结构优化研究
高维BP神经网络
粒子群算法
神经网络
结构优化
一种自适应的混沌粒子群优化RBF神经网络算法
混沌
自适应
RBF神经网络
变异
交叉
混合粒子群优化算法优化前向神经网络结构和参数
粒子群优化
神经网络
故障诊断
遗传算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种混沌混合粒子群优化RBF神经网络算法
来源期刊 计算机技术与发展 学科 工学
关键词 混沌 自适应变异 粒子群 模拟退火 RBF神经网络 目标检测
年,卷(期) 2013,(8) 所属期刊栏目
研究方向 页码范围 181-184
页数 4页 分类号 TP39
字数 3611字 语种 中文
DOI 10.3969/j.issn.1673-629X.2013.08.046
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周少武 湖南科技大学信息与电气工程学院 103 684 11.0 22.0
2 刘洁 湖南工程学院设计艺术学院 22 33 3.0 5.0
3 李目 湖南科技大学信息与电气工程学院 35 171 7.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (480)
参考文献  (12)
节点文献
引证文献  (5)
同被引文献  (9)
二级引证文献  (11)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(6)
  • 参考文献(1)
  • 二级参考文献(5)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(2)
  • 二级参考文献(1)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(4)
  • 参考文献(3)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(6)
  • 引证文献(1)
  • 二级引证文献(5)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
混沌
自适应变异
粒子群
模拟退火
RBF神经网络
目标检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导