作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将基于粒子群算法的支持向量机与半监督学习理论相结合,提出了粒子群算法支持向量机的半监督回归模型.针对典型的实验数据集进行实验,并将实验结果与常规的遗传算法支持向量机和粒子群支持向量机模型进行对比.实验结果表明,粒子群算法支持半监督回归模型明显提高了回归估计的精度.
推荐文章
基于支持向量回归机和粒子群算法的改进协同优化方法
协同优化
支持向量回归机
粒子群算法
粒子群优化的隐空间光滑支持向量机算法
隐空间
支持向量机
熵函数
粒子群优化
共轭梯度法
基于粒子群算法优化支持向量机的模拟电路诊断
故障诊断
模拟电路
粒子群优化
多小波变换
支持向量机
基于粒子群算法优化支持向量回归的水质预测模型
水质监测
支持向量回归机
非线性惯性权重
粒子群优化算法
组合模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 粒子群算法支持向量机的半监督回归
来源期刊 电子科技 学科 工学
关键词 半监督学习 支持向量机 粒子群算法 遗传算法
年,卷(期) 2013,(9) 所属期刊栏目 协议·算法及仿真
研究方向 页码范围 10-13
页数 4页 分类号 TP181
字数 4075字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马蕾 西北工业大学明德学院计算机信息技术系 14 68 3.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (1838)
参考文献  (5)
节点文献
引证文献  (4)
同被引文献  (9)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
半监督学习
支持向量机
粒子群算法
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子科技
月刊
1007-7820
61-1291/TN
大16开
西安电子科技大学
1987
chi
出版文献量(篇)
9344
总下载数(次)
32
总被引数(次)
31437
论文1v1指导