作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文对霍尔辛赫矿安全监测系统的瓦斯浓度时间序列利用软阈值小波去噪法进行去噪;分析支持向量机不敏感损失参数ε和RBF核函数参数.基于粒子群算法对支持向量机瓦斯浓度模型进行优化,结合最优参数对进行ε-SVR模型预测,对预测误差进行分析,并将训练样本的大小对预测精度的影响做出了比较.
推荐文章
基于PSO-SVM的煤与瓦斯突出强度预测模型
煤与瓦斯突出
预测
粒子群优化支持向量机(PSO-SVM)
BP神经网络
一种基于累加PSO-SVM的网络安全态势预测模型
网络安全
态势预测
累加预处理
支持向量机
粒子群算法
深度学习耦合粒子群优化SVM的瓦斯浓度预测
深度学习
特征提取
SVM神经网络
粒子群优化
瓦斯预测
基于PSO-SVM的发动机故障诊断研究
粒子群优化算法
支持向量机
发动机
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化的PSO-SVM的瓦斯时间序列突出预测方法
来源期刊 中国科技信息 学科
关键词 粒子群优化 支持向量机 煤矿 瓦斯突出预测
年,卷(期) 2013,(12) 所属期刊栏目 基础及前沿
研究方向 页码范围 55-57
页数 3页 分类号
字数 4226字 语种 中文
DOI 10.3969/j.issn.1001-8972.2013.12.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 田伟鹏 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (391)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群优化
支持向量机
煤矿
瓦斯突出预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国科技信息
半月刊
1001-8972
11-2739/N
大16开
北京西城区车公庄大街16号1号楼1610室
82-415
1989
chi
出版文献量(篇)
49952
总下载数(次)
82
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导