基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对深空背景下的红外弱小目标检测,提出了一种基于聚类分析的目标检测方法,该方法将经过背景抑制的连续几帧图像构造组合帧,基于目标的运动特性,对分割后的组合帧进行聚类分析,从而检测到弱小目标并同时获得目标运动轨迹,再对检测结果进行聚类检验,从而去除虚假目标,降低虚警率.实验结果表明该算法对多目标的检测有较高的鲁棒性,且相对于传统的小目标检测算法有更高的检测率和较好的实时性.
推荐文章
基于局部窗口的红外弱小目标检测方法
红外图像
红外弱小目标
背景预测
目标检测
基于时空域融合的红外弱小目标检测新方法
时空域融合
弱小目标
小波变换
Tophat变换
基于矢量小波的红外弱小目标检测算法研究
矢量小波
弱小目标
目标检测
红外图像
基于时空域融合的红外弱小目标检测算法
时空域融合
Top-hat
三帧差分滤波
或运算
小目标
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于聚类分析的红外弱小目标检测
来源期刊 计算机工程与应用 学科 工学
关键词 红外小目标 聚类分析 组合帧
年,卷(期) 2013,(8) 所属期刊栏目
研究方向 页码范围 17-21
页数 分类号 TP391.41
字数 4944字 语种 中文
DOI 10.3778/j.issn.1002-8331.1211-0063
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 桑农 华中科技大学图像识别与人工智能研究所 72 1091 19.0 30.0
2 魏龙生 中国地质大学武汉机械与电子信息学院 8 38 4.0 6.0
3 罗大鹏 中国地质大学武汉机械与电子信息学院 9 47 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (75)
共引文献  (83)
参考文献  (12)
节点文献
引证文献  (4)
同被引文献  (6)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(3)
  • 参考文献(0)
  • 二级参考文献(3)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(3)
  • 参考文献(1)
  • 二级参考文献(2)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(5)
  • 参考文献(1)
  • 二级参考文献(4)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(8)
  • 参考文献(1)
  • 二级参考文献(7)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(9)
  • 参考文献(0)
  • 二级参考文献(9)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(11)
  • 参考文献(3)
  • 二级参考文献(8)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
红外小目标
聚类分析
组合帧
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导