基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The identification and classification of pathological voice are still a challenging area of research in speech processing. Acoustic features of speech are used mainly to discriminate normal voices from pathological voices. This paper explores and compares various classification models to find the ability of acoustic parameters in differentiating normal voices from pathological voices. An attempt is made to analyze and to discriminate pathological voice from normal voice in children using different classification methods. The classification of pathological voice from normal voice is implemented using Support Vector Machine (SVM) and Radial Basis Functional Neural Network (RBFNN). The normal and pathological voices of children are used to train and test the classifiers. A dataset is constructed by recording speech utterances of a set of Tamil phrases. The speech signal is then analyzed in order to extract the acoustic parameters such as the Signal Energy, pitch, formant frequencies, Mean Square Residual signal, Reflection coefficients, Jitter and Shimmer. In this study various acoustic features are combined to form a feature set, so as to detect voice disorders in children based on which further treatments can be prescribed by a pathologist. Hence, a successful pathological voice classification will enable an automatic non-invasive device to diagnose and analyze the voice of the patient.
推荐文章
改进的RBFNN学习算法及其应用
正交最小二乘
径向基神经网络
目标识别
一种基于Normal矩阵的时间序列聚类方法
时间序列聚类
社团结构
复杂网络
Normal矩阵
相似度
一种基于Normal基椭圆曲线密码芯片的设计
椭圆曲线
normal基
数字签名
认证
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Classification of Normal and Pathological Voice Using SVM and RBFNN
来源期刊 信号与信息处理(英文) 学科 医学
关键词 Terms—Pitch Formants JITTER SHIMMER Reflection COEFFICIENTS SVM RBFNN
年,卷(期) 2014,(1) 所属期刊栏目
研究方向 页码范围 1-7
页数 7页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Terms—Pitch
Formants
JITTER
SHIMMER
Reflection
COEFFICIENTS
SVM
RBFNN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号与信息处理(英文)
季刊
2159-4465
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
301
总下载数(次)
0
总被引数(次)
0
论文1v1指导