基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In analyzing data from clinical trials and longitudinal studies, the issue of missing values is always a fundamental challenge since the missing data could introduce bias and lead to erroneous statistical inferences. To deal with this challenge, several imputation methods have been developed in the literature to handle missing values where the most commonly used are complete case method, mean imputation method, last observation carried forward (LOCF) method, and multiple imputation (MI) method. In this paper, we conduct a simulation study to investigate the efficiency of these four typical imputation methods with longitudinal data setting under missing completely at random (MCAR). We categorize missingness with three cases from a lower percentage of 5% to a higher percentage of 30% and 50% missingness. With this simulation study, we make a conclusion that LOCF method has more bias than the other three methods in most situations. MI method has the least bias with the best coverage probability. Thus, we conclude that MI method is the most effective imputation method in our MCAR simulation study.
推荐文章
基于Cache Missing的RSA计时攻击
RSA
同步多线程
Cache
滑动窗口
Mechanism of accelerated dissolution of mineral crystals by cavitation erosion
Cavitation erosion
Mineral dissolution
Plastic deformation
Stepwave
Gibbs free energy
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Comparative Study of Four Methods in Missing Value Imputations under Missing Completely at Random Mechanism
来源期刊 统计学期刊(英文) 学科 医学
关键词 MISSING Data IMPUTATION MCAR COMPLETE Case LOCF
年,卷(期) 2014,(1) 所属期刊栏目
研究方向 页码范围 27-37
页数 11页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MISSING
Data
IMPUTATION
MCAR
COMPLETE
Case
LOCF
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导