基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Spam is a universal problem with which everyone is familiar. A number of approaches are used for Spam filtering. The most common filtering technique is content-based filtering which uses the actual text of message to determine whether it is Spam or not. The content is very dynamic and it is very challenging to represent all information in a mathematical model of classification. For instance, in content-based Spam filtering, the characteristics used by the filter to identify Spam message are constantly changing over time. Na?ve Bayes method represents the changing nature of message using probability theory and support vector machine (SVM) represents those using different features. These two methods of classification are efficient in different domains and the case of Nepali SMS or Text classification has not yet been in consideration;these two methods do not consider the issue and it is interesting to find out the performance of both the methods in the problem of Nepali Text classification. In this paper, the Na?ve Bayes and SVM-based classification techniques are implemented to classify the Nepali SMS as Spam and non-Spam. An empirical analysis for various text cases has been done to evaluate accuracy measure of the classification methodologies used in this study. And, it is found to be 87.15% accurate in SVM and 92.74% accurate in the case of Na?ve Bayes.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
基于 EPICS 的 J-TEXT CODAC系统
CODAC系统
托卡马克
ITER
EPICS
对搜索引擎中垃圾数据Spam的识别分析
垃圾数据
链接型欺骗数据
识别策略
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Mobile SMS Spam Filtering for Nepali Text Using Naïve Bayesian and Support Vector Machine
来源期刊 智能科学国际期刊(英文) 学科 工学
关键词 SMS SPAM FILTERING Classification Support Vector Machine Na?ve BAYES PREPROCESSING Feature Extraction Nepali SMS Datasets
年,卷(期) 2014,(1) 所属期刊栏目
研究方向 页码范围 24-28
页数 5页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SMS
SPAM
FILTERING
Classification
Support
Vector
Machine
Na?ve
BAYES
PREPROCESSING
Feature
Extraction
Nepali
SMS
Datasets
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能科学国际期刊(英文)
季刊
2163-0283
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
102
总下载数(次)
0
总被引数(次)
0
论文1v1指导