Personalized social matching systems can be seen as recommender systems that recommend people to others in the social networks, with desirable skills/characteristics. In this work, an algorithm based on Ant Colony is proposed to solve the optimization problem of clustering/matching people in a social network specifically designed for this purpose;during this process, their personal characteristics and preferences (and the degree of importance thereof) are taken into account. The numerical results indicate that the proposed algorithm can successfully perform clustering with a variable number of individuals.