基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Cloud computing aims to maximize the benefit of distributed resources and aggregate them to achieve higher throughput to solve large scale computation problems. In this technology, the customers rent the resources and only pay per use. Job scheduling is one of the biggest issues in cloud computing. Scheduling of users’ requests means how to allocate resources to these requests to finish the tasks in minimum time. The main task of job scheduling system is to find the best resources for user’s jobs, taking into consideration some statistics and dynamic parameters restrictions of users’ jobs. In this research, we introduce cloud computing, genetic algorithm and artificial neural networks, and then review the literature of cloud job scheduling. Many researchers in the literature tried to solve the cloud job scheduling using different techniques. Most of them use artificial intelligence techniques such as genetic algorithm and ant colony to solve the problem of job scheduling and to find the optimal distribution of resources. Unfortunately, there are still some problems in this research area. Therefore, we propose implementing artificial neural networks to optimize the job scheduling results in cloud as it can find new set of classifications not only search within the available set.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
基于IPTV Cloud VR的技术研究
IPTV
Cloud
VR
业务场景
体系架构
JOB-9003炸药释出气体研究
分析化学
炸药
释出气体
固相微萃取
JOB-9003的动态性能实验
固体力学
动态本构特性
SHPB实验
JOB-9003
逆向Taylor柱实验
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Job Scheduling for Cloud Computing Using Neural Networks
来源期刊 通讯与网络(英文) 学科 工学
关键词 Cloud COMPUTING JOB SCHEDULING Artificial INTELLIGENCE Artificial Neural Networks
年,卷(期) 2014,(3) 所属期刊栏目
研究方向 页码范围 191-200
页数 10页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Cloud
COMPUTING
JOB
SCHEDULING
Artificial
INTELLIGENCE
Artificial
Neural
Networks
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通讯与网络(英文)
季刊
1949-2421
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
427
总下载数(次)
0
总被引数(次)
0
论文1v1指导