基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Estimation of the transpiration rate for a tree is generally based on sap flow measurements within the hydro-active stem xylem. In this study, radial variation of sap flow velocity(Js) was investigated at five depths of the xylem(1, 2, 3, 5 and 8 cm under the cambium) in three mature Xinjiang poplar(Populus alba L. var. pyramidalis) trees grown at the Gansu Minqin National Studies Station for Desert Steppe Ecosystem from May to October 2011. Thermal dissipation probes of various lengths manufactured according to the Granier's design were installed into each tree for simultaneous observation of the radial patterns of Js through the xylem. The radial patterns were found to fit the four-parameter GaussAmp equation. The peak Js was about 27.02±0.95 kg/(dm2?d) at approximately 3 to 5 cm deep from the cambium of the three trees,and the lowest Js appeared at 1 cm deep in most of the time. Approximately 50% of the total sap flow in Xinjiang poplar occurred within one-third of the xylem from its outer radius, whereas 90% of the total sap flow occurred within two-fifth of the xylem. In addition, the innermost point of the xylem(at 8-cm depth), which appeared as the penultimate sap flow in most cases during the study period, was hydro-active with Js,8 of 7.55±3.83 kg/(dm2?d). The radial pattern of Js was found to be steeper in midday than in other time of the day, and steeper diurnal fluctuations were recorded in June, July and August(the mid-growing season). Maximum differences between the lowest Js(Js,1 or Js,8) and the highest Js(Js,3 or Js,5) from May through October were 12.41, 17.35, 16.30, 18.52, 12.60 and 16.04 g/(cm2?h), respectively. The time-dependent changes of Js along the radial profile(except at 1-cm depth) were strongly related to the reference evapotranspiration(ET0). Due to significant radial variability of Js, the mean daily sap flow at the whole-tree level could be over-estimated by up to 29.69% when only a single probe at depth of 2 cm was used. However, the accuracy of the estimation of sap flow in Xinjiang poplar could be significantly improved using a correction coefficient of 0.885.
推荐文章
期刊_丙丁烷TDLAS测量系统的吸收峰自动检测
带间级联激光器
调谐半导体激光吸收光谱
雾剂检漏 中红外吸收峰 洛伦兹光谱线型
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Radial profile of sap flow velocity in mature Xinjiang poplar(Populus alba L. var. pyramidalis) in Northwest China
来源期刊 干旱区科学(英文版) 学科 农学
关键词 sap flow radial pattern Populus alba L.var.pyramidalis reference evapotranspiration(ET0) Granier method
年,卷(期) 2014,(5) 所属期刊栏目
研究方向 页码范围 612-627
页数 16页 分类号 S792.11
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
sap flow
radial pattern
Populus alba L.var.pyramidalis
reference evapotranspiration(ET0)
Granier method
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
干旱区科学
双月刊
1674-6767
65-1278/K
新疆乌鲁木齐市北京南路818号
eng
出版文献量(篇)
793
总下载数(次)
0
论文1v1指导