基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper offer an artificial neural network (ANN) model to calculate drag force on an axisymmetric underwater vehicle by obtaining dataset from a computational fluid dynamic analysis. First, great effort was done to calculate the pressure and viscous data forces by increasing the precision and numerical data in order to extend and raise quality of dataset. In this step, numerous different geometry models (configurations of axisymmetric body) were designed, examined and evaluated input parameters including: diameter of body, diameter of nose disc, length of body, length of nose and velocity whereas outputs contain pressure and viscous forces. This dataset was used to train the ANN model. Feed-forward neural network (FFNN) is selected which is more common and suitable in this field’s study. A three-layer neural network was opted and after training this network, the results showed good agreement with CFD data. This study shows that applying the ANN model helps to reach final purpose in the least time and error, in addition a variety of tests can be performed to have a desired design in this way.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Applying the Artificial Neural Network to Estimate the Drag Force for an Autonomous Underwater Vehicle
来源期刊 流体动力学(英文) 学科 数学
关键词 Drag Force FEED-FORWARD Neural Networks BACK-PROPAGATION Algorithm AUV
年,卷(期) 2014,(3) 所属期刊栏目
研究方向 页码范围 334-346
页数 13页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Drag
Force
FEED-FORWARD
Neural
Networks
BACK-PROPAGATION
Algorithm
AUV
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
流体动力学(英文)
季刊
2165-3852
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
302
总下载数(次)
0
总被引数(次)
0
论文1v1指导